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Neutron single-crystal analysis of complex protein structures requires the collection of intensity data 
on a large number of reflections. The use of time-of-flight analysis (in particular Fourier time-of-flight 
analysis employing phase detection) of diffraction data, offers a significant increase in the efficiency of 
the use of reactor neutrons. Such a method would facilitate the use of neutron diffraction in protein 
structure work. In this paper, we investigate the use of the Fourier chopper in single-crystal work. 
We examine the effect of various system parameters (frequency stability, flight path fluctuations, col- 
limation, sample mosaic spread, inaccuracy in phase detection, and statistical counting errors) and 
determine general specifications for such an apparatus. None of these specifications appears to be 
beyond present day technology. 

1. Introduction 

The use of neutron diffraction in structure studies of 
complex organic molecules is attracting the interest of 
crystaUographers (Moore, Willis & Hodgkin, 1967; 
Schoenborn, 1969). Neutrons offer the following ad- 
vantages: (1) hydrogen atoms become visible, (2) 
nitrogen atoms may be distinguished from carbon 
or oxygen atoms, (3) damage to specimens during ir- 
radiation is absent and (4) anomalous dispersion offers 
the possibility of easily phasing diffraction data. The 
chief disadvantage of neutrons is that compared with 
X-ray sources, the neutron flux (monochromated and 
collimated) available from even the highest flux reac- 
tors is down by a factor of 105 [as compared with a 
copper target rotating anode X-ray source (Arndt, 
1969)]. 

* Work performed under the auspices of the U.S. Atomic 
Energy Commission, 

Neutrons and neutron sources differ from X-rays and 
their sources in a number of additional ways. Neutron 
velocity is low (thermal neutron velocity is of the order 
of 2200 meter/second). The neutron source emits a 
Maxwellian distribution of velocities unlike the char- 
acteristic radiation of X-ray sources. In spite of these 
fundamental differences, present day neutron diffrac- 
tion apparatus is basically identical to its X-ray counter- 
part. Typically, a narrow 'slice' of the reactor spectrum 
is selected by a crystal, providing a beam of mono- 
chromatic radiation which is then fed into a spectro- 
meter equipped with a computer-controlled four-circle 
goniometer (Hamilton, 1968). Because this scheme of 
collecting data requires an essentially monochromatic 
beam, most of the source neutrons are wasted. 

Other inefficiencies are built into this scheme. Data 
is taken sequentially, rocking the crystal through one 
reflection, then another, and so on. At any given time, 
typically less than one part in 106 of the neutrons 
~triking the monochromator are detected at the counter. 
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We can make up for a large number of these ineffi- 
ciencies by having the entire polychromatic beam strike 
the specimen crystal. The resulting Laue pattern would 
be composed of a number of spots, each of which is 
made up of the various orders of a particular class of 
reflections. The identity of the particular class can be 
established from knowledge of the unit cell, the detector 
position, and specimen crystal orientation. The inten- 
sity in the spot, i.e. the detector counting rate, is given 
by (Zachariasen, 1967) 

iv (2/n)4 
Ih.k.,= ~ ~(2/n) 2 2 n=l 2 sin 2 0 [Fnh'nLnll N c 6 V  (1) 

where ~(2/n) is the incident neutron flux per unit wave- 
length at neutron wavelength 2In, 0 is the Bragg angle 
of the Laue spot, F is the reflection structure factor, Arc 
is the unit-cell density of the sample crystal and 6 V the 
volume of the sample, h, k, and l are the primary 
Miller indices of the Laue spot. The number of reflec- 
tions 'N '  observed in a single spot will be finite only if 
the incident spectrum is also finite. 

The advantages of this arrangement over the con- 
ventional diffractometer are obvious. Full use is made 
of the entire reactor spectrum. No rocking of the crystal 
is necessary since the intensity in the diffracted beam is 
the integrated intensity (Lowde, 1956). Data can be 
taken at a large number of angles simultaneously, using 
a multidetector counting system. The main disadvan- 
tage of this technique, recognized by Lowde (1956) is 
its inability to separate the intensity of each spot into 
the individual integrated intensity data of the compo- 
nent orders. Without this separation, the technique is 
of little or no use in protein structure work. 

As is shown in this report, we can achieve this separ- 
ation by using a time-of-flight technique involving the 
sinusoidal modulation of the intensity of the incident 
beam. Thus, we can preserve the gain in data collection 
efficiency afforded by simultaneous use of nearly the 
entire reactor spectrum, and still obtain reliable meas- 
ures of the integrated intensities in large numbers of 
Bragg reflections. The high transmission of a Fourier 
chopper (duty cycle _ 25 % for a wheel and stator ar- 
rangement) allows a substantial incident intensity gain 
over the more conventional time-of-flight analysis de- 
scribed by Buras, Mikke, Lebech & Leciejewicz (1965). 

The remainder of this paper consists of four sections, 
conclusions, and an Appendix. § 2 covers the mathe- 
matics of phase sensitive time-of-flight decomposition 
of a Laue spot. In this section, we also discuss the ef- 
fects of uncertainties in the knowledge of the neutron 
flight time and modulation frequency. In § 3, we discuss 
resolution effects due to statistical uncertainties in fre- 
quency control and phase detection. § 4 describes how 
data are analyzed to yield integrated intensities and the 
uncertainty in each such intensity determination. § 5 
sketches the value of combining the Fourier chopper 
with a multiple detector system. The Appendix presents 
the derivation of essential expressions discussed in the 
body of this paper. 

2. Phase-sensitive analysis of a Laue spot 

The time-of-flight neutron apparatus can best be 
treated, as shown by Colwell, Lenihan, Miller & 
Whittemore (1968), in the formalism of electronic cir- 
cuit theory. The system is treated as a filter (or 'linear 
system' see Lee, 1966) whose transfer function is the 
time-of-flight spectrum. The spectrum of a Laue spot 
consists of a finite number of discrete peaks char- 
acterized by neutron transit times of r, z/2, z/3, . . .  v/N, 
( z=2  //3956, where 2 the neutron wavelength is in 
gmgstr~Sms, l the flight path is expressed in meters, and 
z in seconds) where N is the highest order allowed by 
the incident spectrum. When each order is infinitely 
sharp, this time-of-flight spectrum may be expressed as 
a sum over delta functions 

N 

f ( t ) =  ~Inc~( t -  z/n) , (2) 
n = I  

where In is the integrated neutron intensity in the n th 
order reflection. If the intensity of the incident beam is 
mechanically modulated with rotational frequency co, 
then we will have impinging on the sample a time vary- 
ing intensity of the form 

I0(t) = 1 + A sin (cot)+ B sin (2cot) 

+ C  sin (3cot)+ . . .  (3a) 
where 

A + B + C +  . . .  =1 (3b) 

Note that we have included a DC component, as neu- 
tron intensity can never be negative, and allowed for 
higher harmonics. The constant A lies between zero 
and one, and is determined by apparatus design (if, for 
example, our chopper consists of a wheel of identical 
radial slots rotating past a stator of similar design, A 
cannot be greater than 0-8 as the waveform produced 
is not a pure sinusoid). The effects of higher harmonics 
and the Fourier chopper have been considered by Col- 
well et al. (1968) and are not serious for the radial slot 
machine (sawtooth wave generator). In this paper, we 
consider higher harmonics in permitting A to take on 
values less than one, while otherwise ignoring them. In 
this approximation, the time dependent intensity seen 
by the detector will be 

f I ( t )=  ~ In(1 + A sin coX)~ 
X------oo n----1 

×(t-~/n-X)dX+I~ (4) 
which is 

I ( t )=  ~ In 1 + A  sin (cot) cos 
n = l  

_ os sin 

Here IB is a constant background arising from general 
room background, and incoherent and/or inelastic pro- 
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cesses occurring within the sample itself. Note that 
equation (5) can be rewritten in the following form 

I(t) = C+ D sin (cot + ~0) (6) 

where, for any given Laue spot and fixed sample orien- 
tation, C is a constant while D and ~0 are functions of 
co, r, and the relative values of the In's. 

The essentials of a single detector Fourier chopper 
system as described by Colwell et al. (1968) are depicted 
in Fig. 1. In this method of gathering data, the pulses 
from the detector are fed into four scalers, a, b, c, and d, 
each of which is activated during one quarter of a cycle 
of the incident modulation. After collecting data for a 
time T (T>> 1/co) the scalers are read and the following 
functions constructed: 

B = a + b + c + d  (7a) 
C ( c o ) = a - b - c  + d (7b) 
S(co) = a + b - c -  d . (7c) 

It is easy to show that these functions are equivalent to: 

(" ) B =  T ~ I n + I n  (8a) 

C(co) = 2(TAIrc) In cos (cot~n) (8b) 

[" ] S(co) = -2 (TA/rO ~, In sin ((.or/n) (8c) 
n = l  

The constant B is simply the total number of neutrons 
collected in time T. It is necessary in scaling C(co) and 
S(o)) and in determining the statistical uncertainty of 
these quantities. C(co) and S(co) are finite trigonometric 
series whose coefficients are the integrated intensities 
of the Bragg reflections of the Laue spot. 

By taking data at a small number of properly chosen 
frequencies, one can obtain values of C(co) and S(co) 
associated with a set of independent equations which 
may be inverted to yield the In's. The minimum number 
of frequencies required to produce N such independent 
equations is just N/2 (or N/2-1 if N is odd). Although 
there are many other possible choices for our set of 
frequencies, we shall in this paper discuss only the case 
of the minimum sized frequency net. 

By solving sets of equations of the above form, it can 
be shown that extremely small variations in r produce 
large errors in the calculated values of the coefficients 
In, especially when n is large. While both frequency co 
and time-of-flight r enter the equations in the same 
way, frequency measurements accurate to one part in 
l0 s are readily performed, and this accuracy is sufficient 
to introduce negligible error into the analysis. Such an 
independent determination of r (from independent 
measurements of flight path and neutron wavelength) 
is, however, not feasible. We can, however, calculate r 
precisely by collecting data for N +  1 orders, and then 
analyzing our data for In and r subject to the constraint 
that I~v+x =0.  Since it is only the mean values of r and 

co which must be determined with this high accuracy, 
we do not see this precision as an important obstacle to 
the use of the technique• 

3. Instrumental resolution 

Additional variations in flight path and frequency 
during a measurement tend to smear out any time de- 
pendent intensity variations impressed on the neutron 
beam thus degrading data. Finite detector thickness, 
finite sample size, non-zero collimation and mosaic 
spread of the sample, and small irregularities in the 
drive speed of the chopper itself all contribute. Con- 
sidering such fluctuations to be relatively small, and 
assuming a Gaussian shape to ',_he time-of-flight spec- 
trum peaks, it can be shown (see Appendix) that equa- 
tions (8b) and (8c) become: 

N 
C(co)=(2TA/rc)~In cos (coz/n) exp [-½(corK~n) z] (9a) 

N 
S(CO) = - ( 2 T A / r c ) ~ I n  sin (cot/n) exp [-½(corK/n)2] (9b) 

where K is a constant of the form: 

K=[(6co/co)z+(6t[l)Z+(50/tan O)Z] 1/z . (10) 

Equation (8a) is unaffected. In the above, &o]co and 
5l/l are the fractional fluctuations in frequency and 
flight path respectively, 0 is the Bragg angle of our 
Laue spot, and O0 is a measure of the total angular 
spread of the system consisting of both collimation and 
sample mosaic width. The constant K may be estimated 
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Fig. 1. A single detector Fourier chopper system. 
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from direct measurement of these instrumental param- 
eters, or extracted from reflection data through use of 
equations (ga) and (9/)). 

The effects of possible error in detecting the exact 
phase of the chopper signal due to gating errors in the 
four signal scalers must also be considered. Four dis- 
tinct gating signals must accurately define the four 
equal quadrants of the incident signal, and control the 
scalers accordingly. Errors in this mechanism can be of 
two types: (1) a statistical flutter of the gating signals 
about their correct phases, and (2) a constant displace- 
ment of one or all gating signals from their correct val- 
ues. 

The former merely enters as a frequency fluctuation, 
and can be directly included in the quantity, &o/co. If 
&0 is the standard deviation of the flutter of a gating 
signal, and (&o/CO)m is the actual fractional frequency 
flutter of the chopper mechanism, then 

(aa /oo) = [(&O/CO)m + (2&o/z02]  '/2 . (11) 

With existing electronics, such phase fluctuations can 
be held to a fraction of a per cent. 

A constant bias in one or all of these gating signals 
will effectively change the values of C(co) and S(co) 
which are measured• If &0~ is a measure of this bias for 
all four gates, we can expect these changes in C(o)) and 
S(o9) to be of magnitude: 

8S(o)) ~- (5C(co) "" BcS~oU2rc . (12) 

With careful construction of equipment, one can expect 
to hold 5~0b/2zc below one per cent, rendering fiS(og) and 
~C(o9) from this source to be less than the statistical 
counting errors involved in data collection. 

The statistical uncertainty involved in counting ran- 
dom events enters our analysis in a simple way. As- 
suming Poisson statistics, the uncertainty in C(co) and 
S(co) in any experiment will be simply equal to (B) I/z. 
The uncertainties in C(co) and S(co) due to these effects 
are uncorrelated, thus one may perform calculations 
with combinations of C(co) and S(co) carrying the un- 
certainties along in the usual way. The uncertainties due 
to a phase bias, however, will generally be correlated, 
and a correct error analysis including them is rather 
complicated. Since they are expected to be small com- 
pared with (B) llz, we will neglect them here. 

From the above analysis, it is clear that while the ef- 
fects of instrumental resolution are not likely to be neg- 
ligible, they can be treated in a straightforward manner. 
Thus, a useful chopper system can be constructed to 
mechanical and electronic tolerances easily obtainable 
by present day technology. 

4. Data analysis 

The crystallographic data we seek are the relative values 
of the integrated intensities _In. We must therefore de- 
termine how uncertainties in C(~o) and S(co) propagate 

through our analysis so as to be able to determine the 
uncertainty in any value of In we might calculate. We 
assume 2 and z to be approximately known from exper- 
imental geometry and the previously determined (per- 
haps by X-ray work) unit cell of our crystal. 

With the availability of large general purpose digital 
computers, the simplest method of obtaining the inten- 
sities of the various orders is probably that of solving 
our set of independent simultaneous equations by de- 
terminants. We discuss the properties of this analysis 
technique here. If A is the determinant of our set of 
equations 

X I , 1 X 1 , 2  . . .  X1,N 
X 2 , 1 X ' 2 , 2  . . .  

A = . 0 3 )  

X~v,iX2v,2 . . .  X~v,~ 
where 

(2(TOA/rc) cos (o)~z/n) exp [-½(og~zK/n)], 

X,,n= -(2(TI-2v/z)A/rc) sin (coi-~/2z/n) i < N/2 
exp [-½(coi-2v/2zK/n)], i> N]2 (14) 

and Ai, n is the cofactor of A associated with the (i,n)th 
element, then we can write: 

N12 N 
I .=  c(<oO ~S(oo~-lv/2) 05) 

l = 1  1 = N / 2 + l  

Once we have accurately determined z, and correctly 
measured other instrumental parameters (co, and K) 
the major source of uncertainty in the intensities In will 
be that introduced by statistical counting errors in C(co) 
and S(co). We can see how these errors affect the In's 
by taking the partial derivatives: 

OIn/OC(o)O=(ALn/A), i< N/2 (16a) 

OIn/OS(oo~-u,z)=(ALn/A) i> N/2 (16b) 

Since the errors of C(co) and S(co) are statistically un- 
correlated, and Gaussian distributed with standard de- 
viation equal to (BOll z, then the In's are also Gaussian 
distributed with standard deviation: 

I NI2 6I.= 
l=l 

+ 21/2. (17) 
l ~NI2+l 

The uncertainty in our intensities then is a rather com- 
plicated function of our set of frequencies, the first 
order flight time of our neutrons, and the time spent 
collecting data at any frequency. A well designed exper- 
iment will be one which chooses co~,r, and T~ to min- 
imize 6In~In. This optimization is generally only pos- 
sible when the In's are already known. Although this 
is never the case, one may obtain some knowledge of 
the integrated intensities beforehand by rapidly scan- 
ning through the reflections, or guessing a structure 
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from data available and calculating expected intensi- 
ties. Either or both of these approaches will allow one 
to establish some criterion for optimizing these exper- 
imental parameters. 

When one has little previous knowledge of the inten- 
sities In, one may choose all T's to be equal. In this 
case, the values of co~ and 7: which minimize the C~In's 
are those for which the determinant of the equations 
is an extremum. The uncertainties in the In's increase 
as we change co~r to produce non-extremum values of 
A, and approach infinity when A goes to zero (i.e. 
where the equations are either no longer independent, 
or where they become a homogeneous set, in which 
case determinant solutions are not possible). This is 
illustrated in the following computer simulation of a 
Fourier chopper experiment. 

We have assumed a chopper system in which K =  
0.02, and where formulae (9a) and (9b) apply. We as- 
sume that the Laue spot of interest consists of only 
first, second, and third orders of respective intensities 
10000, 1000, and 100 neutrons per unit time T=rc/2A. 
We have left I = 0, so as to allow for the determination 
of z from our data, employing a net of only two differ- 
ent frequencies. Assuming A ~_0.8, and a background 
roughly 10% of the elastic intensity, we calculate 
(B)~ 2= 155. We have calculated C~In/In for a few com- 
binations of co~:, and present the results in Table 1. 
(One can get a feel for the magnitude of the frequencies 
involved by assuming that the first order neutron is of 
3 ~ wavelength, and that the flight path is one meter. 
The first order transit time is the 0.758 milliseconds, 
and the frequency corresponding to cor=2zc is just 
=8.205 radians/sec or f=co/2~r= 1.32 kHz, which is 
relatively low.) 

We see from Table 1 that C~In/In is generally minimal 
where A is an extremum. Fig. 2 presents a plot of the 
absolute value of A as a function of co~r and O.)2T. At 
points of extreme A, the values of din are roughly the 
same for all orders, rendering the weakest order in- 
distinguishable from background. In no case is the 
weakest reflection detected. This is the most serious 
limitation of the Fourier method. If accurate measure- 
ment of the intensity of weak reflections is essential, 
one can take some advantage of the shape of the inci- 
dent spectrum and orient the sample to maximize the 

weaker orders and minimize the strong, or alternatively 
one may simply measure such weak reflections on a 
more conventional spectrometer. 

In protein structure studies, the general practice is to 
measure many more reflections than are strictly re- 
quired, thus overdetermining the structure. This is 
done, in part, to help correct for inaccuracies in each 
individual reflectivity determination. In this type of 
work, we expect that the ability of the Fourier chopper 
system to rapidly measure a large number of reflections 
will far outweigh its inability to precisely measure the 
weakest reflections. 

Since the above analysis depends upon the finiteness 
of the number of orders in a Laue spot, it may prove 
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Fig. 2. Absolute value of the four by four determinant used in 
analyzing the three-order Laue spot as a function of COlt and 
C02r. 

Table 1. Some values of ~ln/In calcutated for the Fourier decomposition of a three-order Laue spot assuming 
ln= 10000, 1000, 100 neutrons/ T respectively, T=rc/2A, A=0.8 ,  K=0.02,  and 1B= 1000 neutrons/T 

Position code colt c.oar Determinant 511/11 512/12 513/13 
(Fig. 2) extremum? 

a 13"35 7.069 yes 0.012 0.063 0-56 
b 18.06 12"17 yes 0"013 0.19 1"93 
c 25-53 19" 63 yes 0.015 0-204 2-26 
d 30.63 24"35 yes 0"014 0"115 1-30 
e 17"24 2"75 yes 0.012 0.16 1.42 
f 22.38 9.032 yes 0.012 0-26 1.21 
g 28.67 15.31 yes 0.015 1.01 2-37 
h 16-08 14-92 no 0.028 0.69 4"59 
i 12.96 13"75 no 0.044 0.53 4-50 
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necessary to sharply terminate the incident beam spec- 
trum at both long and short wavelength limits. A cer- 
tain amount of filtering is necessary anyway to elim- 
inate ionizing radiation from the beam to prevent 
sample damage, and to control the number of Laue 
spots to prevent overlap of one spot upon another, 

In determining any structure, we require the relative 
intensities of the various Bragg reflections. This means 
that we must normalize all intensities to account for 
the variation in the incident intensity with wavelength. 
For this a knowledge of the reactor spectrum and its 
variation with time is required. This may be accom- 
plished with another crystal (of known reflectivity) and 
another detector making use of the same chopper for 
time-of-flight analysis. 

Some crystal parameters are also wavelength depen- 
dent, and must be determined before accurate structure 
factors can be calculated. Such parameters include neu- 
tron attenuation by the sample, and possible extinction 
effects within the sample. 

For the sake of illustration, only three orders were 
assumed above. In an actual experiment with a com- 
plicated protein crystal, one would expect to see up to 
thirty or forty orders in high symmetry directions. In 
this case, the computations become more lengthy, but 
are identical in form to those employed above. 

5. A multidetector Fourier chopper 

The great attractiveness of the Fourier chopper lies in 
its adaptability to a multidetector system. A number 
of promising multiple detector and position sensitive 
detector systems ultimately adaptable to neutron 
work are presently under development at Brookhaven 

 iiiiiiiii!iiiiiiiiiiiiiiiiiiiiii  
/ 

Fig. 3. One quadran t  of  a basal plane of  the reciprocal lattice 
of  a hypothetical  protein crystal with cell dimensions 
30 x 60 A, and the limiting Ewald spheres of  the neutron spec- 
trum. All reflections falling between the two spheres are in 
reflecting positions. With a large bank of detectors, relatively 
few crystal orientations are needed to obtain data for a 1.5 A 
resolution structure determination.  

(Thomas & Hamilton, 1969), Oak Ridge (Borkowski & 
Kopp, 1968; Davidson, 1968), and other laboratories. 

Fig. 3 represents part of a protein crystal reciprocal- 
lattice layer, and the limiting Ewald spheres for a neu- 
tron spectrum of 1.5 to 5 ~. In high symmetry direc- 
tions, one may observed up to 30 or 40 orders in a Laue 
spot, though the average number of orders per spot 
will be much lower, perhaps three or four. The crystal, 
mounted on an on-line computer-controlled three- 
circle goniometer will be oriented to maximize the data 
collection efficiency of the detector array. 

6. Conclusions 

The above analysis has demonstrated how a Fourier 
chopper might be applied to the problem of gathering 
neutron diffraction data for single crystal protein struc- 
ture work. None of the problems foreseen in the design 
of such a system is insoluble by today's technology. 
Such a system appears to be mechanically and electron- 
ically relatively simple yet potentially extremely econ- 
omic of reactor neutrons (a multidetector Fourier chop- 
per system being 100 to 1000 times more efficient than 
a conventional spectrometer). Though limitations exist 
in the ability of such a system to measure very weak 
reflections in the presence of strong ones, it should be 
eminently capable of gathering vast amounts of data 
on a large number of reflections in a short time. This 
makes such a system very attractive for protein struc- 
ture work in which one generally tries to overdetermine 
the structure by measuring more reflections than is ab- 
solutely necessary. Maximum efficiency of such a sys- 
tem requires the services of a moderate sized (off-line) 
computer (50,000 core locations), in addition to a 
smaller on-line machine. 

A Fourier chopper system is now under construction 
at Brookhaven National Laboratory for evaluation at 
the High Flux Beam Reactor. 

The authors are grateful to Dr W. L. Whittemore of 
Gulf General Atomic for a number of discussions re- 
garding the applications of the Fourier chopper. We 
also wish to thank Miss Nancy Chesser for writing the 
computer programs used in this study. 

APPENDIX 

We shall here sketch the derivation of formulae (9a), 
(9b) and (10), and determine their range of applicability. 
In this derivation, we will consider two independent 
sources of instrument error: that introduced by statis- 
tical variations in neutron transit time, and frequency 
instability in the chopper itself. 

Since a neutron may be diffracted from any region 
of the sample crystal, and detected in any part of the 
active region of the detector, no two neutrons will have 
exactly the same flight path. The actual flight path of 
any neutron will vary about a mean value I with a stan- 
dard deviation Jl, which will be roughly equal to the 
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sum of sample and detector thickness. The fractional 
uncertainty in neutron transit time due to this effect 
will be 

6z/vlz=rZ/l . (18) 

Due to finite collimation of the incident beam, and 
finite mosaic spread of the sample, the actual neutron 
scattering angle will fluctuate about the mean Bragg 
angle 0B with a standard deviation 60. This implies a 
spread in wavelengths of the Bragg reflected neutrons, 
with a resulting fractional uncertainty in transit time of 

&/rlo=60/tan OB. (19) 

The above effects are independent. If we assume both 
to introduce a Gaussian spread of neutron transit times, 
then the time-of-flight distribution of a Laue spot will 
be 

N e x p { - ½ (  t-z/nK~z/n ) 2} 

f ( t ) =  ~ In , (20) 
n=l V~-~(K,z/n) 

where 
'~ /16l \2  ( 60 ]2 (21) 

The time dependent counting rate seen by the detector, 
when the incident beam is sinusoidally modulated (I0 = 
1 + A sin cot), is 

I ' N  /(t)= ~ [I+A sin (coX)l/. 

/ / t-~/n-X~2 l 
× exp[-½~ ~-z-~z/n / J dX+/B (22) 

where once again, IB is the system background counting 
rate. For reasons of causality, the limits of integration 
on both equations (22) and (4) should be - o o  to t. 
Since t is always taken to be very much larger than the 
time-of-flight "c/n' and the width of the time-of-flight 
distribution K~z/n, we have made the approximation of 
integrating to + oo to obtain 

N [ f / cozK¢ \ 21 
I( t )= ~ ln lL +Aexp/--½t~) / 

n = l  

7)] - -  cos cot + sin cot cos + IB. (23) 
n 

By collecting data in four-gated scalers, each scaler 
contains the time-integrated intensity in one quadrant 
of the incident oscillation. Performing this time inte- 
gration, and forming the appropriate sums and differ- 
ences we have, after collecting data for a total time T: 

N 

B= TI Zln  + IBI (24a) 
n~, l  

2AT 
c @ ) =  + - -  

7(, 

{ × ~ l n  exp -½ - - K s  cos (24b) 
n==l 

2AT 
s ( c o )  = - - -  

7~ 

N 
X n~=l In exp { -½ ( ~  KO 2} sin ( - ~ ) .  (24c) 

The smearing of the transit time has reduced the effec- 
tive magnitude of In by the above exponential factor. 

If we now allow the chopper frequency to vary in a 
Gaussian way about a mean frequency co, the measured 
value of B does not change, but the values of C(co) and 
S(co) will be the above functions averaged over the 
distribution: 

exp{_X/coz-_co_' 2} 
2t, coKco ] dcox, (25) 

P(coz)dx= V~coK~o 

where 
Ko~=rco/co (26) 

is the fractional standard deviation of the distribution. 
Performing the average, we have 

COT/rl 
COS - -  2TA N l+eZ 

( c ( c o ) )  = + - -  ~ I .  - -  
,=1 1/1 "q-e 2 

exp {_½] K2(coz/n)2 
l+e2 1} (27a) 

( s ( c o ) )  - 

sin co'tin 
2TA ~ In - - - l  q- ~2 

zc n= l ]/1 "~- e, 2 

exp - ½ 1 + e 2 

where we have set 

and 

(27b) 

e= K, vK~coz/n (28) 

2 2 2 K = K, + K~ z . (29) 

Equation (29) is simply equation (10) in slightly differ- 
ent form. When e < 0.1, the above formulae approach 
the forms (9a) and (9b). 

Let us now determine how large e might be for a 
working apparatus. If we have a system with a one- 
meter flight path, a 5 mm thick detector, and a sample 
crystal also of 5 mm dimensions, we shall have: 

6 t / /~<0 .01  

If we restrict our scattering angle to be greater than 5 ° , 
and assume that collimation and sample mosaic com- 
bine to produce 60_0.5 °, then we will have 

and 
60~tan OB < O" 1 , 

/ / ,<0"1.  
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Let us assume a frequency stability of 

Kco= 10-3 . 

If our top frequency in 50 kHz, and the longest wave- 
length we detect is 10 A, we will have coz/n < 794, and 

e_~O.08. 

Such a chopper system would be adequately described 
by equations (9a) and (9b). 
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Absorption and Volume Corrections for a Cylindrical Sample, Larger than the X-ray Beam, 
Employed in Eulerian Geometry 
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A treatment of the absorption and volume corrections for a cylindrical sample, which is larger than the 
X-ray beam and which is employed in 'Eulerian cradle' geometry, is described. The procedure described 
here is strictly correct only for a one-dimensional X-ray beam, but it has given satisfactory results for a 
beam of finite cross section. The calculation is easily done by computer and requires only the radius of 
the sample, the 20 and Z values for each reflection, and the zeros of Legendre polynomials and their 
weights if Gaussian integration is used. 

Introduction 

Although procedures for absorption corrections have 
been extended to crystals of arbitrary shape and to 
diffraction geometries currently in use, most of these 
treatments assume that the crystal is completely ir- 
radiated by the primary X-ray beam (see, for example, 
Wuensch & Prewitt, 1965). However, Skertchly (1957) 
has pointed out that in the investigation of metallic 
and fibrous substances it is often convenient to use a 
cylindrical specimen having a diameter larger than 
that of the X-ray beam. He treated the case of a 
cylindrical specimen irradiated with a fine beam at 
perpendicular incidence. 

* Present address: Department of Chemistry, North Central 
College, Naperville, Illinois, U.S.A. 
t Present address: Center for Radiation Research, National 

Bureau of Standards, Washington, D.C., U.S.A. 

A situation arose in our laboratory involving a large 
cylindrical crystal and 'Eulerian cradle' geometry 
(Coyle, Schroeder & Ibers, 1970) where the incident 
beam and the crystal are not necessar~y perpendicular. 
An absorption and volume correction for such a geo- 
metry is developed in this paper. The treatment devel- 
oped is subject to two limitations. A minor restriction 
is that the axis of the cylindrical crystal be coincident 
with the ~0 (polar) axis of the 'Eulerian cradle' (Furnas, 
1957). This should be easily achieved in most experi- 
mental situations. The second limitation is that our 
treatment is exact only for a one-dimensional beam. 
Thus, it is desirable that the ratio of the beam diameter 
to the diameter of the cylinder be as small as is experi- 
mentally feasible. 

When a crystal is not totally bathed in an X-ray 
beam the volume of that crystal seen by the beam is 
not necessarily constant for various reflections, and 
the amount of variation depends on the geometry of 
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